BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN, VOL. 46, 636-637 (1973)

Magnetic Circular Dichroism of Cu(acac)₂, Fe(acac)₃, and Co(acac)₃

Hajime Katô and Junichi Gohda

Department of Chemistry, Faculty of Science, Kobe University, Nada-ku, Kobe (Received May 9, 1972)

The magnetic circular dichroism (MCD) spectra of Cu(acac)₂, Fe(acac)₃, and Co(acac)₃ have been measured; they are shown in Fig. 1.

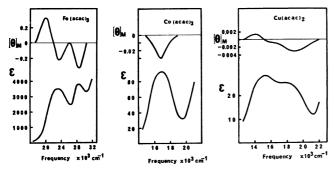


Fig. 1. The experimental MCD and absorption spectra of Fe(acac)₃, Co(acac)₃, and Cu(acac)₂. $[\theta]_{\rm M}$ is the molar ellipticity per unit magnetic field. ε is the molar extinction coefficient. MCD has been measured by the techniques described in detail in an earlier paper.^{5,8)}

There has been considerable discussion concerning the assignment of bands appearing in the visible region of the spectrum of bis(acetylacetonato)copper(II), Cu(acac)₂, but no final solution to the problem has yet appeared. 1-4) One of the present authors (H.K) has studied the MCD of some Cu2+ complexes and found that the B-term of the MCD parameters is dominant in the MCD of the Cu²⁺ complexes at room temperature.⁵⁾ According to the analysis, the MCD line shape of Cu(acac)2 suggests two possible assignments: the order of the energy levels is $|xz, yz| \ge |x^2-y^2|$ $\gg |z^2 \gg |xy > \text{ or } |z^2 \gg |x^2-y^2 \gg |xz, yz \gg |xy >$, where the locations of the x and y axes are in the plane and along the C_2 axes. However, in order to understand the high-frequency shift of the peak with a large negative MCD band from the maximum point of the absorption band, it is reasonable to assume a positive MCD band in the 16500 cm⁻¹ region. Therefore, we propose this order of energy levels; $|xz, yz| |x^2-y^2| |z^2| |xy|$ on the basis of the MCD analysis.5) Assuming the transition energies to be 14500, 16500, and 18500 $cm^{-1} \ \ for \ \ the \ \ ^2B_{1g} \!\!\to^2\!\! A_{1g}, \ \ ^2B_{1g} \!\!\to^2\!\! B_{2g}, \ \ [and \ \ ^2B_{1g} \!\!\to^2\!\! E_{g}$

transitions respectively, we have calculated the oscillator strengths and the Faraday parameter B (Table 1). The zeroth moment of the MCD satisfies the relation:⁶⁾

$$\int_{\text{band}}([\theta]_{\text{M}}/\nu)d\nu = -33.53(B + C/kT)$$

The values of (B+C/kT) are extracted by simple numerical integrations of the experimental data. By estimating the line shape, we have obtained the experimental values shown in Table 1. The estimated values of B for the lower two bands depend on the estimation of the line shape. However, the order of magnitude is in very good agreement with the calculated ones; these results support the present assignment.

The MCD spectra of Co(en)₃³⁺ and Co(ox)₃³⁺, which are of a D_3 symmetry, were studied by McCaffery and his co-workers.⁷⁾ The MCD of Co(acac)₃ (Fig. 1) is very similar in appearance to the MCD of the 17000 cm⁻¹ band of $Co(ox)_3^{3+}$. $[\theta]_{M_{max}}/\varepsilon_{max}$ is 2×10^{-4} , which is of the same order of magnitude as the value for the ${}^{1}A_{1} \rightarrow {}^{1}E_{a}$ band of $Co(ox)_{3}{}^{3}$. The resemblance to Co-(ox)3+ shows that the static distortion is the major factor governing the d-d intensities. Since the ground state, ¹A₁, is nondegenerate, the MCD of the 16800 ${\rm cm^{-1}}$ band of ${\rm Co(acac)_3}$ shows that the Faraday B-term is absolutely dominant. However, the maximum contribution of an A-term to MCD, $[\theta^A]M_{max}$, is given by $3\sqrt{3}\omega_{ja}^{(0)}A/4\Gamma_{ja}^{2}\hbar$. The magnitude of A/D for the ${}^{1}A_{1} \rightarrow {}^{1}E$ transition in a D_{3} symmetry in solution is theoretically given as $1/2\beta k$, where k(>0) is the orbital angular momentum reduction factor. The value of D is obtained from $\int \varepsilon d\nu$. Then, $A(^{1}A_{1} \rightarrow {}^{1}E_{a})$ is $0.098\beta k$ (in Debye² unit). Using the experimental values of $\omega_{\rm ja} \simeq 16800~{\rm cm}^{-1}$ and $\Gamma_{\rm ja} \simeq 4000~{\rm cm}^{-1}$, we obtain $[\theta^{A}]_{M_{max}} = 0.0028k$. This value is about 10% of $[\theta]_{M_{max}}$. Therefore, we cannot estimate the magnitude of the quenching of the excited-state angular momentum.

The ground state of Fe(acac)₃ is ⁶A₁. In such a case, where the ground state is spin-degenerate and orbitally nondegenerate, the spin-orbit splitting of the orbitally degenerate excited state causes the C terms of the split components of the transition no longer to cancel and gives rise to a MCD changing in sign

Table 1. Oscillater strengths and faraday parameter B for Cu(acac)₂

$f^{ m Obs}$	B ^{Obs a)}	Energy (cm ⁻¹)	Assignment	$f^{ exttt{Cal}}$	B ^{Cal a)}
3×10 ⁻⁴	-0.6×10^{-5}	14500	$^2\mathrm{B}_{1\mathrm{g}}\!\!\to^2\!\!\mathrm{A}_{1\mathrm{g}}$	5×10 ⁻⁴	-0.4×10^{-5}
1×10^{-4}	-0.2×10^{-5}	16500	$^{2}\mathrm{B}_{1\mathrm{g}}\!\!\!\longrightarrow^{2}\!\!\mathrm{B}_{2\mathrm{g}}$	1×10^{-4}	-0.2×10^{-6}
3×10^{-4}	1.9×10^{-5}	18500	$^{2}\mathrm{B}_{1\mathrm{g}}\!\!\!\longrightarrow^{2}\!\mathrm{E}_{\mathrm{g}}$	5×10^{-4}	0.8×10^{-5}

a) In units of $\beta \times \text{Debye}^2/\text{cm}^{-1}$.

¹⁾ T. S. Piper and R. L. Belford, Mol. Phys., 5, 169 (1962).

²⁾ J. P. Fackler, F. A. Cotton, and D. W. Barnum, *Inorg. Chem.*, **2**, 97 (1963).

³⁾ C. Dijkgraaf, Theor. Chim. Acta, 3, 38 (1965).

⁴⁾ H. C. Allen, J. Chem. Phys., 45, 553 (1966).

⁵⁾ H. Katô, Mol. Phys., 24, 81 (1972).

⁶⁾ P. N. Schatz and A. J. McCaffery, Quart. Rev., 23, 552 (1969).
7) A. I. McCaffery, P. J. Stephens, and P. N. Schatz, Inorg.

⁷⁾ A. J. McCaffery, P. J. Stephens, and P. N. Schatz, *Inorg. Chem.*, **6**, 1614 (1967).

through the band.^{7,8)} However, the bands of moderate intensity at about 23000 and 29000 cm⁻¹ can plausibly be assigned to allowed charge-transfer transitions, ${}^6\mathrm{A}_{1\mathrm{g}}{\to}{}^6\mathrm{T}_{1\mathrm{u}}$ (${}^6\mathrm{A}_1{\to}{}^6\mathrm{E}{+}{}^6\mathrm{A}_2$). The magnitude of spinorbit spliting is determined by $<{}^6\mathrm{A}_{1\mathrm{g}}|\mathrm{H}_{\mathrm{so}}|{}^6\mathrm{T}_{1\mathrm{u}}>$, which is reduced to one-electron matrix elements, $<\mathrm{d}|\mathrm{H}_{\mathrm{so}}|\mathrm{L}>$ for the $\mathrm{d}^5\mathrm{L}^2{\to}\mathrm{d}^6\mathrm{L}$ transition and $<\mathrm{L}'|\mathrm{H}_{\mathrm{so}}|\mathrm{d}>$ for the $\mathrm{d}^5{\to}\mathrm{L}'\mathrm{d}^4$ transition. These two-center integrals are small; therefore, the C-term must be negligible. The magnitude of A/D for the ${}^1\mathrm{A}_1{\to}{}^1\mathrm{E}$ transition in a D_3 solution is given by $<\!\!\!<\!\!\!E||\mu||E>i/\sqrt{6}\!\!\!<\!\!\!>\!\!\!\beta$. Therefore, the expected MCD is of the β -type (which is defined in Ref. 9); this contradicts the observed one. There-

fore, the observed MCD must be the B-term; it shows the existence of three bands, at 20000, 24000, and 28500 cm⁻¹. Hanazaki and his co-workers¹⁰) predicted the existence of three bands, a transition to $V_1(E)$, $V_1(A_2)$ at 17000 cm⁻¹ with f=0.007, a transition to $V_6(E)$ at 24000 cm⁻¹ with f=0.095, and a transition to $V_8(E)$, $V_4(A_2)$ at 26500 cm⁻¹ with f=0.039. The present MCD analysis supports their assignments. A much more detailed analysis of the B-term would confirm our assignments. MCD studies of the solvent effects of some copper β -diketonates are now in progress in our laboratory.

⁸⁾ H. Katô, J. Chem. Phys., in press.

⁹⁾ H. Katô, This Bulletin, 45, 1281 (1972).

¹⁰⁾ I. Hanazaki, F. Hanazaki, and S. Nagakura, J. Chem. Phys., 50, 265, 276 (1969).